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Abstract
Estimation of realized fecundity (Freal, number of viable oocytes produced) is an essential,
yet seldom-achieved element in the understanding of marine animal production and
population dynamics. We used the Neutral Red (NR) vital stain to determine oocyte
viability in spawns and gonad strippings of four species of commercially-important
bivalves: Cerastoderma edule (L), Crassostrea gigas Thunberg, Mytilus edulis L, and
Tapes philippinarum (Adams and Reeve). The utility of Trypan Blue as a complementary
mortal stain was also assessed, and found to be unnecessary. Normal, live oocytes stained
with NR, and were either spherical (mature oocytes) or pedunculated (immature oocytes);
atresic/abnormal oocytes also stained with NR, allowing their ready recognition due to
their abnormal shapes and cytoplasmic retraction. Dead oocytes did not stain with NR.
Across the species studied, a considerable and highly variable proportion of spawned or
stripped oocytes was either dead or non-viable; quantitative counts were performed for
Cerastoderma edule, the only species for which > 5 spawns occurred. The high level and
variability (34–85%) of dead or non-viable oocytes is consistent with a reproductive Red
Queen dilemma, in which greater oocyte numbers do not translate to commensurately
greater real fecundities, and also with a Sweepstakes Reproductive Success strategy, in
which a large range of Freal confronts the considerable variability of intertidal environ-
mental conditions. Neutral Red vital staining is a promising tool for the elucidation and
optimization of crucial yet previously intractable aspects of bivalve hatchery production,
genetic improvement, restocking, stock management, and conservation.
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Introduction

Bivalve capture fisheries and aquaculture account for approximately 15% of global annual
seafood production, registering an eightfold increase over the bivalve production levels
recorded in the 1970s (Wijsman et al. 2019). Although aquaculture is the major focus of
bivalve production, fisheries management, restocking, conservation, and pollution monitoring
are also important objectives (His et al. 1999; Gomez and Mingoa-Licuanan 2006; Arnold
2008; Joaquim et al. 2008; González-Wangüemert et al. 2018; Kreeger et al. 2018;
Shantharam et al. 2019).

The need to assess oocyte quality for improved bivalve production has been recognized for
decades (Utting and Millican 1997); however, this criterion has not yet been incorporated into
broodstock genetic improvement efforts (Boudry 2009; Barros et al. 2018). Similarly, the
assessment of fecundity and elucidation of early life stage mortality is, either directly or
indirectly, at the heart of stock-recruitment analysis (Aoyama 1989; Koslow 1992; Jennings
et al. 2001; Maunder and Thorson 2019), yet the evaluation of oocyte quality in spawns is a
missing element in this process.

To date, assessments of oocyte quality have often been performed retrospectively, through
fertilization rates, based on polar body or cell division observations (Uttig and Spencer 1991,
Buttner and Weston 2010, Militz and Southgate 2021), analysis of chemical composition, and
performance indicators (Caers et al. 1999, 2002; Massapina et al. 1999; Nevejan et al. 2003;
Cannuel and Beninger 2005; Corporeau et al. 2012; García-Corona et al. 2018). Histochemical
staining of specific oocyte components, in particular lipids, may also yield information on
oocyte quality (Valdez-Ramirez et al. 2002). Lipid-specific stains such as Oil Red O and
Sudan Black have been used to evaluate the quality of spawned oocytes (Gallager and Mann
1986; Gallager et al. 1986; Gómez-Robles et al. 2005; Angel-Dapa et al. 2010); however, the
level of a biologically - important chemical component does not signify that the organism or
cell is even alive (Moens and Beninger 2018).

The criterion of viability is surely the most fundamental of all oocyte quality indicators. The
presence of atresic oocytes within the gonad reduces the realized fecundity (Freal) compared to
the potential fecundity (Fpot – Jennings et al. 2001); in the case of marine bivalves, this has
been estimated at approximately 50% of the total gamete volume over the course of the
gametogenic cycle (Chérel and Beninger 2017, 2019; Chérel et al. 2020). It is not known what
proportion, if any, of these atresic and other non-viable (dead) oocytes are spawned along with
normal oocytes. Ideally, therefore, evaluation of spawn viability should yield information on
the number of live, dead, and dying (atresic) oocytes.

A promising candidate for bivalve oocyte viability assessment is the Neutral Red (NR)
stain. First reported as a vital stain by Ehrlich (1894), various NR protocols emerged as
standard tests for cell vitality, beginning late in the twentieth century (Winckler 1974; Nemes
et al. 1979; Hammond et al. 1980), usually in the context of tissue cultures or single cells
subjected to various challenges (Borenfreund and Puerner 1984; Triglia et al. 1991; Lowe et al.
1992, 1995a, b; Babich and Borenfreund 1993; Weeks and Svendsen 1996; Chiba et al. 1998;
Svendsen et al. 2004; Repetto et al. 2008; Aguirre-Martínez et al. 2013; Patetsini et al. 2013;
Hu et al. 2015; Liu et al. 2018). The technique was used as early as 1972 by Dressel et al. to
differentiate between live and dead plankton, and continues to be so used to the present
(Crippen and Perrier 1974; Horvath and Lamberti 1999; Tang et al. 2006; Elliott and Tang
2009; Zetsche and Meysman 2012; Da Luz et al. 2016). It is thus somewhat surprising that it
has not yet been employed for the same purpose in bivalve oocytes. Conversely, the same can
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be said of the mortal stain Trypan Blue, widely used to detect dead cells in the biomedical
fields (Wales 1959; Talbot and Chacon 1981; Kwok et al. 2004; Strober 2015; Rajab and
Demer 2019).

Ideally, a spawned oocyte viability assessment should have the following characteristics:

& Specificity for live oocytes
& Low per-test cost
& Low equipment cost
& Simplicity – for routine use by hatchery workers
& Rapid execution and rapid results – so that the oocytes may be either used or disposed of

immediately after obtention
& Low sample size (to preserve the utility of the obtained oocytes)
& Universality – for use with any bivalve species

The present study documents the use of Neutral Red as a vital stain, to collect the first known
data on the viability of oocytes obtained by induced spawning or gonad stripping in four
species of commercially - important bivalves: Cerastoderma edule (L), Crassostrea gigas
Thunberg, Mytilus edulis L, and Tapes philippinarum (Adams and Reeve).

Material and methods

Sampling and gamete obtention

All bivalves were haphazardly collected in the Traict du Croisic, on the French Atlantic coast
(47° 17′ 26″ N, 2° 30′ 16.2″ W). Cerastoderma edule and T. philippinarum were sampled on
the mudflat at low tide, whereas Crassostrea gigas and M. edulis were sampled on adjacent
rocky substrates. Sampling for Cerastoderma edule was performed on April 17 and May 2,
2019, because previous work had shown them to be spawning-competent at this early date in
the gametogenesis season (Chérel and Beninger 2019). Only individuals >20 mm shell length
(SL) were retained, corresponding to the size at which normal gamete production is achieved
(Mejuto 1984; Pérez Camacho and Román 1984). The actual size range was 20.8–35.1 mm,
and the corresponding shell age rings were 1–2.5 years.

Additional sampling was performed on 11 and 25 June 2019, at which time all four species
were in advanced gametogenesis, and on 31 July 2020, when spawnings were known to occur.
M. edulis specimens were all > 40 mm SL, T. philippinarum were all > 20 mm SL, and
Crassostrea gigas were all > 20 mm SL; the latter to ensure that some males were sampled for
spawning induction.

Spawning induction was repeatedly attempted for all four species, using various thermal
shock–emersion regimes, as well as the addition of spermatozoa stripped from male individ-
uals. Successful induction was obtained for at least 8 Cerastoderma edule, 3 M. edulis, and 1
Crassostrea gigas specimens. Experience showed that cockles spawned more readily in
groups of 3–4 individuals, so it was not possible to ascertain the exact number of individuals
that spawned (especially since release occurred in short “dribbles” of nearly transparent
oocytes). Gamete stripping was used to obtain oocytes from all individuals for which spawning
induction failed. Table 1 summarizes the numbers of individuals actually used for each
staining assay. As Cerastoderma edule was the most oogenically advanced of the four species

Aquaculture International



studied in April and May 2019, spawning induction was attempted every day, up to 8 days
following sampling (Table 2); specimens were kept in cold storage (emersion, 4 °C) between
spawning attempts.

Staining procedure

Neutral Red was used as a vital stain, and for contrast, Trypan Blue was employed as a mortal
stain. Exploratory work showed that the best staining results were obtained with Neutral Red at
5 mg ml−1, and Trypan Blue at 2 mg ml−1 of filtered seawater. Although a large amount of
undissolved Trypan Blue remained at this latter concentration, it was nonetheless necessary in
order to obtain sufficient dissolved product capable of staining dead oocytes. Oocytes trans-
ferred to a microscope slide using a Pasteur pipette could be observed under an Olympus
Provis AX70 optical microscope within 3 min of addition of a drop of NR prepared stain. TB
staining required at least 1 h incubation time at room temperature prior to observation. Oocyte
counts were performed for Cerastoderma edule at 40× on a haphazardly-chosen slide transect
using Olympus cellSens Standard software; counting was stopped at 200 oocytes.

Table 1 Number of females from which gametes were obtained by induced spawning or gonad stripping. *At
least one of the spawning group per spawn

Species Spawn Stripping

Cerastoderma edule 8* 3
Mytilus edulis 3 1
Crassostrea gigas 1 3
Tapes philippinarum 5

Table 2 Cerastoderma edule mean oocyte viability counts (%). N, number of females; NR, Neutral Red stained;
TB, Trypan Blue stained

Sampling dates Days in cold storage
Spawning dates

N NR TB

Normal
Range

Atresic/abnormal
Range

Dead
Range

2/05/19 1
03/05/19

4 14.6
19.4

81.8
23.0

3.6
7.4

17/04/19 2
19/04/19

3 30.0
28.3

65.6
32.2

4.3
3.9

2/05/19 4
06/05/19

7 41.7
59.5

54.6
48.5

3.7
14.3

5
07/05/19

5 34.3
42.1

41.9
39.5

23.8
32.2

17/04/19 6
23/04/19

3 66.4
2.7

23.7
14.4

9.9
17.1

2/05/19 7
09/05/19

4 34.6
79.8

46.2
47.1

19.2
32.7

8
10/05/19

2 14.3
12.0

11.9
2.6

73.9
12.0

Means of pooled counts
Range

34.9
79.8

48.8
79.1

15.2
78.5
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Oocyte categories

In contrast to histological preparations, the whole mount preparations necessary for examina-
tion of spawned oocytes do not provide sufficient cellular detail to definitively identify atresic
oocytes; therefore, all live oocytes with abnormal shapes, cytoplasmic shrinkage, and ruptured
cell membranes were designated as “atresic/abnormal.” The three oocyte viability categories
were thus (1) “normal” (live, i.e., NR stained, normally shaped, no cytoplasmic shrinkage or
membrane rupture), (2) “atresic/abnormal” (variably NR stained, rendering atresic and abnor-
mal characteristics evident), and (3) “dead” (unstained, little or no cytoplasm, ruptured
membranes).

Results

Efficient determination of all three oocyte viability categories was not possible using unstained
whole mounts (Fig. 1 a). Neutral Red stained both normal and atresic/abnormal oocytes of all
four species studied. Atresic/abnormal oocytes were readily recognized by their irregular
shapes, cytoplasmic shrinkage (undetectable in unstained cells), and ruptured cell membranes
(Figs. 1 b–d and 2 a, b), rendered easily visible by the Neutral Red stain. Prior to staining with
Trypan Blue, dead oocytes were either not stained by NR, or so faintly stained that they were
easily recognized (Figs. 1, 2, 3, and 4). Oocytes stained with Trypan Blue were assumed to be
dead (Figs. 1 b, c, e, 2 b, c). Only NR-stained, spherical oocytes developed into larvae (Fig. 4).
The initial divisions produced uniformly NR-stained cells, whereas at the first larval stage,
most of the NR appeared to have relocated to the spherical cell nuclei (Fig. 4).

Fig. 1 Cerastoderma edule whole mounts. a Unstained, spawned oocytes. b Spawned oocytes double-stained
with Neutral Red and Trypan Blue. DO, dead oocyte; MO, mature oocyte; OC, oocyte coat; the asterisk indicates
atresic oocytes. c–e Details of oocytes from double-staining protocol: c details of mature, atresic, and dead
oocytes; d detail of one mature and one atresic oocyte; note ooplasmic shrinkage; e detail of dead pedunculated
oocyte
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Count results for the three oocyte categories are presented in Table 2 for Cerastoderma
edule, the only species for which more than 5 spawns were obtained (Beninger et al. 2012).
The ranges of inter-individual variation were themselves quite varied, e.g., from 2.7 to 79.8%
for normal oocytes, and 2.6 to 48.5% for atresic/abnormal oocytes. The corresponding means
presented similar strong variations among the different sampling and spawning dates, from
14.3 to 66.4%, and 11.9 to 81.8%. The values for atresic/abnormal oocytes were generally
superior to those of normal oocytes; dead oocytes were the smallest category except for the
value obtained after 8 days of cold storage (73.9%). This being an observational study, no
frequentist statistical tests were performed (Beninger et al. 2012; Beninger and Boldina 2018).

Discussion

Given the diversity of cell types in which a similar result has been obtained (Crippen and
Perrier 1974; Triglia et al. 1991; Lowe et al. 1992, 1995a, b; Babich and Borenfreund 1993;
Weeks and Svendsen 1996; Chiba et al. 1998; Horvath and Lamberti 1999; Svendsen et al.

Fig. 2 Mytilus edulis spawned oocytes double-stained with RN and TB. DO, dead oocyte; MO, mature oocyte;
the asterisk indicates atresic/abnormal oocytes

Aquaculture International



2004; Tang et al. 2006; Repetto et al. 2008; Zetsche and Meysman 2012; Aguirre-Martínez
et al. 2013; Patetsini et al. 2013; Da Luz et al. 2016; Liu et al. 2018), there was little reason to
doubt that NR would also stain live bivalve oocytes. Yet beyond the necessity to verify this, it
was important to determine how atresic/abnormal—“not dead yet”—oocytes would react with
NR. As anticipated, these oocytes also stained to a variable degree with NR; yet the stain
served to facilitate the detection of the abnormal cell shapes, retracted cytoplasm, and
membrane rupture characteristic of such oocytes, and hence to allow their ready identification
and quantification. Overall, contrasting use of Trypan Blue was deemed unnecessary in routine
work, especially since it was difficult to use, due to its low solubility in seawater and lengthy
staining time (introducing an oocyte mortality artefact); it is also comparatively expensive.

The mechanism of NR vital staining has been the object of a great deal of iterative
conjecture, which has become unverified conventional wisdom since the procedure was first
presented by Ehrlich in 1894 (Jacques 1969; Nemes et al. 1979; Hammond et al. 1980;
Borenfreund and Puerner 1985; Borenfreund et al. 1988; Triglia et al. 1991; Weeks and
Svendsen 1996; Svendsen et al. 2004; Repetto et al. 2008). Later studies proposed lysosomes
as the “Zellen Körnchen” (cell granules) in which Ehrlich observed the stain to be concen-
trated; the micrographs of Lowe et al. (1992) and Patetsini et al. (2013) Lowe et al. (1992) and
Patetsini et al. (2013) are among the rare publications which actually support this
interpretation—although not all lysosomes of a given cell appear to have this property
(Winckler 1974).

Notwithstanding the conjecture concerning the exact dynamics of NR within cells, it may
be confidently assumed to cross the cell and lysosomal membranes (although the mechanism is
not known); it is accumulated in the lysosomes due to a much slower re-diffusion to the

Fig. 3 a Tapes philippinarum–stripped oocytes stained with NR. MO, mature oocyte; DO, dead oocyte. b
Crassostrea gigas–stripped oocytes stained with NR. PO, pedunculated oocyte. Most live oocytes are immature
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cytoplasm. Re-diffusion to the cytoplasm and the external medium is accelerated by physical
membrane damage, and possibly impairment of the lysosomal proton pump (Winckler 1974;
Lowe et al. 1992; Patetsini et al. 2013). Our results show that after leaving the lysosome, NR
appears to enter and be retained in the nuclei of Crassostrea gigas trochophore larvae. These
observations confirm that the oocytes which took up NR were viable, and some of them
developed into larvae.

Prior to the present study, it was not known whether the atresic oocytes, identified in the
gonad by histology, were absorbed prior to spawning, or were incapable of being spawned, or
if some or all of them appeared in the spawn. Our observations confirm that a large proportion
of atresic/abnormal oocytes are spawned along with the normal oocytes. The high proportion
of atresic and dead oocytes observed in the present study (30–85%) is entirely consistent with
the previously published quantitative histological data (Chérel and Beninger 2017, 2019).

It is noteworthy that the animals used in the present study were sampled in the field, rather than
being carefully conditioned in a hatchery environment. This may explain the very large discrepancy
with the proportions of inviable oocytes in controlled hatchery spawnings, which are considered
failures at >10% non-zygotes (Uttig and Spencer 1991, Buttner and Weston 2010, Militz and
Southgate 2021). Taken together, these observations suggest that oocytes within broodstockmay be
particularly sensitive to adverse, or even normally-variable external conditions.

A high proportion of inviable post-fertilization stages is typical of high-fecundity species,
including bivalves (Plough et al. 2016; Plough 2018); here we show that these high-fecundity
species are also characterized by a high proportion of inviable pre-fertilization oocytes. The

Fig. 4 Crassostrea gigas whole mounts. Early development of stripped, fertilized oocytes stained with NR. a
Immediately after fertilization. b Initiation of first cytokinesis. c 8-cell stage, nuclei (N) clearly visible. d Second
day after spawning and staining, early trochophore larva. Note NR stain now appears concentrated in spherical
nuclei. C, cilia
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atresia-fraught diminishing returns of many bivalves’ high fecundity have been likened to a
reproductive Red Queen dilemma: greater oocyte production does not translate to a commen-
surate increase in real fecundity (Chérel et al. 2020).

The very wide range of values for inviable oocytes from different individuals and time
periods observed in the bivalve species studied here is also consistent with the Sweepstakes
Reproductive Success (SRS) hypothesis for typical high-fecundity, type III survivorship
marine species. Although at the population level, this strategy enables optimal exploitation
of the rapidly changing environmental conditions of the nearshore marine environment, at the
individual level it has many “losers” and few “winners” (Hedgecock and Pudovkin 2011).
Further support for a strong genetic inviability–SRS component to the phenomenon of oocyte
atresia comes from previous studies which showed that levels of atresia remain similar under
widely different physical perturbation conditions (Chérel and Beninger 2017, 2019). Environ-
mental aggression may contribute additional effects, as reviewed/shown in the gonad in
Beninger (2017) and Smolarz et al. (2017), and demonstrated in the spawns of the present
study with increasing spawner times in cold storage.

Conclusion

To our knowledge, the Neutral Red procedure outlined herein is the first and only technique
which incorporates all of the essential performance criteria outlined above, allowing the rapid,
easy detection of live, atresic/abnormal, and dead oocytes in spawns or gonad strippings. Its
success in all four bivalve species suggests that it may be a universal tool for the evaluation of
bivalve oocyte spawn quality. It can be used expeditiously for this purpose prior to hatchery
fertilization and larval rearing, especially in the absence of prolonged, careful conditioning,
and also as a phenotypic marker for genetic improvement of broodstock. Application to
restocking is also important, since stock production estimates are heavily dependent on
determinations of Freal, i.e., the number of viable oocytes produced (Aoyama 1989; Koslow
1992; Jennings et al. 2001; Maunder and Thorson 2019). Other important, overlapping
applications include conservation and environmental monitoring.

The oocytes of many benthic marine invertebrates are similar in overall structure and composi-
tion (Adiyodi and Adiyodi 1983; Wourms 1987). Future research may therefore show NR vital
staining to be a valuable tool in assessing oocyte viability in diverse marine taxa, including the
ecologically- and commercially-important Anthozoa, Polychaeta, and Gastropoda.
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