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Abstract
Two co-occurring, enigmatic aspects of bivalve reproduction were investigated in the common cockle Cerastoderma edule: 
the oocyte coat and oocyte atresia. Qualitative histology and transmission electron microscopy (TEM) of cockles collected 
on the French Atlantic coast revealed not only the fine structure of the oocyte coat, but also confirmed that it is secreted by the 
oocyte itself and composed of acid mucopolysaccharides (AMPS), known to be viscous and adhesive. Quantitative histology 
showed that at the peak of oogenesis, oocyte coats occupy the largest fraction (approx. 40%) of the gonad acinal volume, 
representing both a significant sacrifice of female gamete capacity, and a non-gamete energetic investment. Potential benefits 
of the coat include protection from mechanical abrasion, predation, and opportunistic microbes. Atresia (oocyte degeneration) 
was a known second source of reduced fecundity, with a minimum impact of approximately 50% of the total oocyte volume. 
It is suggested that this high proportion of atresic oocytes is related to the previously-documented genetic inviability of early 
post-fertilization life stages. The qualitative histological and TEM observations revealed atresic debris adhering to the exterior 
surface of the oocyte coats. Such an arrangement would isolate adjacent oocyte coats, enabling the oocytes to be spawned 
individually, rather than as an egg mass, and therefore to undergo planktonic development and dispersion. Oocyte atresia and 
the oocyte coat of Cerastoderma edule therefore appear to be linked in the first indication of an adaptive function in bivalves.

Introduction

The presence of a thick, non-living coat surrounding the 
oocytes of several marine bivalve species has been periodi-
cally reported in the scientific literature, often with astonish-
ment, and then collectively forgotten (see Collin and Giribet 
2010; Beninger and Chérel 2019 for references). Various 
authors have believed themselves to be the first to document 

such a feature (Belding 1931; Loosanoff and Davis 1950; 
Lutz et al. 1981, 1982), while most have simply not reported/
observed it; this may be partly due to its poor staining with 
the common topological histology stains (Martínez-Castro 
and Vásquez 2012; Kandeel et al. 2013). The coat has been 
given different names in the relatively few studies in which 
it has been identified: ‘gelatinous egg capsule’ (Creek 1960; 
Gustafson and Reid 1986; Gustafson and Lutz 1992), ‘gelati-
nous membrane’ (Ansell 1961), ‘albuminous sheath’ (King-
ston 1974), ‘egg capsule’ (Lutz et al. 1982) or ‘jelly coat’ 
(Hodgson and Burke 1988; Gros et al. 1997).

Various types of oocyte coats have been reported in the 
Mollusca, and grouped according to their layering: primary, 
secondary, and tertiary (Wourms 1987; Ponder et al. 2019). 
‘Jelly-like’ primary coats have been well documented in the 
polyplacophoran basal group, and this character may thus be 
pleisiomorphic in the Bivalvia (Buckland‐Nicks and Reunov 
2010). The occurrence of this coat in Bivalvia is enigmatic, 
as it does not appear to be taxonomically-related, and no 
major ecological variable appears to explain its presence 
(Beninger and Chérel 2019). Its implications for bivalve 
ecology, fisheries, and aquaculture are nonetheless intriguing 
and potentially important. Much the same has been written 
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about the phenomenon of bivalve oocyte atresia (degenera-
tion of oocytes within the gonad), very largely overlooked 
in the literature (Beninger 2017). Although it has recently 
been brought to the fore in several papers, this phenomenon 
remains poorly-understood and rarely identified, despite the 
fact that it is responsible for most of the early life-stage mor-
tality in both wild and cultured populations (Smolarz et al. 
2017; Chérel and Beninger 2017, 2019). Its causes and exact 
cellular metabolomic nature remain unknown.

In the course of investigating the reproductive impact of 
oocyte atresia in the common cockle Cerastoderma edule, a 
species presenting a well-developed oocyte coat (Chérel and 
Beninger 2019), it became evident that atresia also impacted 
the formation and structure of the oocyte coat. The present 
study is the first to report on the detailed structure of the 
oocyte coat in C. edule or any bivalve, and its relationship 
to ongoing oocyte atresia.

Materials and methods

Species, sites and sampling

Cerastoderma edule is an intertidal endobenthic bivalve 
found on the North-East Atlantic coast, from Mauritania 
to Norway. Fishing and farming of this species are impor-
tant to the economies of the Netherlands, the United King-
dom, and France (FAO, https​://www.fao.org/fishe​ry/speci​
es/3543/en). The study was carried out at two sites on the 
French Atlantic coast within 50 km of each other (Fig. 1), 
as part of a program to investigate the impact of oocyte 
atresia in this species (Chérel and Beninger 2019). Adult 
cockles (15–30 individuals, > 2 cm SL) were haphazardly 
sampled monthly from July 2010–May 2012 at the first site, 
and bi-weekly from January–November 2018 at the second 
site. Only gametogenic females were included in this study 
(n = 301).

Stereological counts were carried out using an 11 × 11 grid 
at 100 × on five features of interest: atresic oocytes (AO), 
immature healthy oocytes (IO), mature healthy oocytes 
(MO), oocyte coat (C) and intra-acinal lumen (IAL) (Chérel 
and Beninger 2019).

A periodic acid-Schiff stain was performed, on additional 
histological sections, as per Cannuel and Beninger (2007), 
to determine whether any neutral mucopolysaccharides were 
also present in the oocyte coat.

The following volume fractions were calculated as per 
Chérel and Beninger (2017, 2019):
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Fig. 1   Location of the two sampled sites

Histology and stereology

Sampled cockles were shucked and fixed in Bouin’s solu-
tion, embedded and sectioned at 7 µm as per Chérel and 
Beninger (2017, 2019). Slides were first stained with Alcian 
blue in order to reveal the oocyte coat (Beninger and Chérel 
2019): acetic acid 1 min, dry 3 min, Alcian blue 30 min), 
followed by a modified Masson’s trichrome topological pro-
tocol as per Chérel and Beninger (2019). Observations and 
photomicrographs were performed using an Olympus Provis 
light microscope, and Olympus cellSens Standard software. 

Total Oocyte Volume Fraction : OVF =
AO + IO + MO

C + IAL + AO + IO + MO
× 100

Atresic oocyte Volume Fraction : AVF =
AO

AO + IO + MO
× 100

Mature oocyte Volume Fraction : MVF =
MO

AO + IO + MO
× 100

Immature oocyte Volume Fraction : IVF =
IO

AO + IO + MO
× 100

Intra − acinal Lumen Volume Fraction:

LVF =
IAL

C + IAL + AO + IO + MO
× 100

https://www.fao.org/fishery/species/3543/en
https://www.fao.org/fishery/species/3543/en
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in addition to the oocyte coat volume fraction:

Transmission electron microscopy

Three tissue pieces of approx. 3 mm3 each were removed 
from the dorsal region of the visceral mass, where previous 
histological observations confirmed that gonad acini were 
most likely to be found. The presence of oocytes was verified 
under a dissecting microscope prior to proceeding with the 
subsequent processing steps. The tissue pieces were imme-
diately fixed in cold 2.5% glutaraldehyde in 0.2 M sodium 
cacodylate buffer (made with filtered seawater from the sam-
pling sites to ensure appropriate pH 7.4 and osmolarity) for 
at least 2 h. The tissue pieces were then rinsed in 0.2 M 
cacodylate buffer and cut to obtain 1-mm3 pieces. Post-fix-
ation was performed in 0.2 M cacodylate buffer/1% osmium 
tetraoxide at 4° for 1 h. After dehydration in a graded ethanol 
series and propylene oxide bath (2 × 15 min), samples were 
transferred to EPON resin/propylene oxide (1:1) at room 
temperature, for 1.5 h. After embedding in pure resin for 1 h, 
polymerization was effected at 60 ℃ for 12 h.

Semi-thin sections were cut at 1 µm using a LEICA 
EMUC7 ultramicrotome and stained with toluidine blue 
for light microscopic observation. Thin sections were cut 
at 80–90 nm, collected on uncoated 300-mesh copper/rho-
dium grids (MAXTAFORM HR25), contrasted with uranyl 
acetate (Bozzola and Russel 1992), and examined using a 
JEOL JEM-1400 transmission electron microscope (TEM).

Coat Volume Fraction : CVF =
C

C + IAL + AO + IO + MO
× 100

Spawning and fertilization

Several spawning induction techniques were attempted and 
abandoned due to poor results: mechanical stimulation, tem-
perature shock, addition of scraped/stripped gonad material, 
and addition of spawned spermatozoa from male cockles. 
Acceptable results were obtained by adapting the technique 
of Honkoop and Van der Meer (1998), using cockles and 
seawater collected during the most likely period of maximal 
gamete maturity (February–July). Cockles were stored over-
night at 4 ℃, out of water. Groups of three to five individuals 
were then placed in separate containers filled with site sea 
water at 15 ℃. Oocyte spawning occurred within 10 min 
to several hours, depending on the maturation state of the 
cockles. Additional thermal stimulation with 30 ℃ sea water 
occasionally improved gamete release. Oocytes and sperma-
tozoa were collected using Pasteur pipettes, and allowed to 
fertilize in a small container of site seawater.

Results

Qualitative characteristics of oocyte coat

The oocyte coat may be invisible or scarcely visible using 
traditional methods of topological histological staining, and 
therefore very difficult to identify (Fig. 2a). This problem 
was solved with the Alcian blue staining step (Fig. 2b), 
which also revealed the coat to be composed of acid muco-
polysaccharides (AMPS–viscous mucus). Similarly, the use 
of toluidine blue, which is orthochromatic with most ooplas-
mic compounds, yet metachromatic with AMPS, allowed 
the coat to be clearly distinguished in semi-thin sections 
(Fig. 3).

Fig. 2   Cerastoderma edule. Mature healthy oocytes stained with a modified Masson’s trichrome and b with Alcian blue added. Nuclear enve-
lope (NE), nucleus (N), nucleolus (NU), oocyte coat (C), and oolemma (OM)



	 Marine Biology (2020) 167:104

1 3

104  Page 4 of 11

Transmission electron microscopy revealed the oocyte 
coat to be formed of two distinct layers. The inner layer was 
more electron-dense and homogenous than the outer layer; 
a thin (0.5–2 µm) electron-lucent zone was present between 
the oolemma and the inner coat layer; its position, thick-
ness, and TEM aspect corresponded to the zona pellucida 
(Figs. 4a and 6a)

Origin and development of the oocyte coat

Young oocytes developed from the acinal wall, in contact with 
auxiliary cells (Fig. 5a). The oocyte peduncle formed as the 
young oocyte grew and began vitellogenesis (Fig. 5b–e). The 
oocyte coat was absent in very young oocytes (Fig. 5a–c), first 
appearing as a very thin layer closely appressed to ~ 20-µm 
diameter oocytes (Fig. 5c, d). The oocyte coat thickened con-
comitantly with oocyte growth, becoming very large around 
late pedunculated and mature oocytes (Figs. 5e and 2b). 
Atresic oocytes, recognizable by their irregular shape and/or 
the change in appearance of the chromatin (Chérel and Beni-
nger 2019) often presented a slightly thinner coat than that of 
healthy oocytes (Fig. 5f, g). Of the 301 females sampled over 
the study period, only 16 showed no signs of oocyte atresia 
in the sections examined, and these individuals all showed a 
lack of gametogenetic activity.

Compared to the young oocyte, vitellogenic oocytes 
contained numerous mitochondria, electron-dense yolk 
vesicles, and clear vesicles in the ooplasm (Fig. 6a). Clear 
vesicles were often located close to the oolemma (Fig. 6b), 
and fusion with the envelope was observed, accompanied by 
exocytosis (Fig. 6c). These observations, together with the 
growing oocyte coat, strongly suggest that these vesicles are 
filled with AMPS, which are exocytosed to form the layers 
of the coat.

Cellular debris and the oocyte coat

Cellular debris was observed in all semithin and thin sec-
tions examined (n = 6 individuals), adhering to the exterior 
surface of the oocyte coat (Fig. 3), and most conspicuously 
between the oocyte coats of adjacent oocytes. Close exami-
nation of the debris under TEM revealed distinct, naked 
mitochondria and yolk granules (Fig. 4).

Features of spawned oocytes

Spawned Cerastoderma edule oocytes were visible to the 
naked eye; they did not adhere to each other and were 
negatively buoyant (Fig. 7a). The newly-spawned, coated 
oocytes measured approximately 135 µm in diameter (oocyte 
66 µm + 2 × 35 6 µm coat thickness); the coat was present 
on both unfertilized and fertilized oocytes (the latter char-
acterized by the disappearance of the nuclear envelope) 
(Fig. 7b). The coat increased in thickness to approximately 
47 µm as the zygote developed, probably due to hydration 
of the mucopolysaccharides. The coat persisted up to at 
least the early veliger (pre-pediveliger) stage (rearing was 
not attempted) (Fig. 7c). Veligers swam within the confines 
of the coat, whose outer reaches appeared much more vis-
cous and resistant to the mechanical stress of the swimming 
(Online resource 1).

Oogenesis and oocyte coat quantification

Oogenesis was continuous, with no apparent inter-individual 
synchronicity (Fig. 8; Chérel and Beninger 2019). At the 
population level, oocyte coats were observed throughout the 
year. The volume fraction of the coat (CVF) was at least 
20−50% of the total acinal volume (Fig. 8).

A CVF mean of 33.6% ± 1.9 (95% confidence inter-
val) was calculated for all individuals together (site 
1 + 2, n = 301). During active gametogenesis, defined 
as MVF > 20% (n = 165), the mean CVF increased to 
40.5% ± 2.1 (95% confidence interval).

Overall, the coat volume fraction varied directly with 
respect to the mature and atresic volume fraction, and 
inversely with respect to immature volume fraction (Fig. 9).

Discussion

Qualitative characteristics of oocyte coat

The results of the Alcian blue, toluidine blue, and PAS stain-
ing confirm the exclusively acid mucopolysaccharide com-
position of the oocyte coat, as was originally hypothesized 
for Thyasira gouldi by Blacknell and Ansell (1974), and 
subsequently demonstrated in Codakia orbicularis by Gros 

Fig. 3   Cerastoderma edule oocytes. Semi-thin section stained with 
toluidine blue. Ooplasm (OP) and cellular debris (OD) stain dark 
blue, oocyte coats (double arrows) stain purple. Nucleus (N)
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et al. (1997) and in Cerastoderma edule by Beninger and 
Chérel (2019).

The clear space between the oolemma and the oocyte 
coat, visible in the histological sections, was not observed 
in the electron microrographs; this feature is thus most 
probably an artefact of the histological preparation (most 
likely the dehydration sequence). Within the coat itself, two 
AMPS layers were evident: an inner, finely-clumped layer, 
and an outer, more coarsely-clumped layer – this may cor-
respond to increased clumping in the oldest AMPS secre-
tions. The presence of such a double layer has also been 
shown in Codakia orbicularis under phase-contrast optics 
(Gros et al. 1997).

Origin and development of the coat

Although Raven (1966) stated that molluscan oocyte cover-
ings external to the oolemma are secreted either by the aux-
iliary (‘follicle’) cells or by the oviduct, the contemporary 
consensus is that the primary envelope (all coats immedi-
ately exterior to the oolemma) is secreted by the oocyte itself 
(see Wourms 1987, Ponder et al 2019 for reviews). Gros 
et al. (1997) stated that the thick oocyte coat of Codakia 
orbicularis is secreted by the oocyte itself (their unpublished 
observations). This conclusion is supported by the thinner 
coat around many atresic oocytes, and by the acinus ste-
reological data of the present study, which clearly show an 

Fig. 4   Cerastoderma edule oocytes. Transmission electron micro-
graphs. a Part of mature oocyte with coat. Nucleus (N), nuclear enve-
lope (NE), ooplasm (OP) and oolemma (OM) with short microvilli 
adjacent to zona pellucida (ZP). b Inner layer (IL) and outer layer 

(OL) of coats from 2 oocytes separated by oocyte debris (OD). c 
Oocyte debris containing mitochondria (M) and yolk granules (YG) 
between adjacent coat outer layers (OL). Note similarity between the 
mitochondria and yolk granules in Fig. 6
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inverse relationship between the immature oocyte volume 
fraction and the coat volume fraction. The light and electron 
microscopic data of the present study are also consistent 
with an oocytic origin for the coat secretions: Mucus (i.e. 
mucopolysaccharide) vesicles were present in the ooplasm 
of vitellogenic oocytes, but absent from the ooplasm of 
pre-vitellogenic oocytes, which is also consistent with this 
interpretation. These mucus vesicles have not been observed 
in bivalve species whose oocytes lack an oocyte coat (Pipe 
1987a; Dorange and Le Pennec 1989; De Gaulejac et al. 
1995; Eckelbarger and Davis 1996; Chung et al. 2007, 2008; 
Lee and Chung 2008; Camacho-Mondragón et al. 2015). The 
TEM micrographs of the present study show that the cellular 
mechanism of coat secretion is merocrine, with large mem-
brane-bound vesicles releasing their contents at the oocyte 
cell surface. This mode of coat secretion is common in the 
Metazoa (Buckland-Nicks and Reunov 2010).

The sharp distinction between the inner and outer oocyte 
coat layers, with no gradation, as observed in the TEM micro-
graphs, argues for discrete secretion at different times: first 
the outer, and later the inner layer. The electron-lucent zona 
pellucida or ‘vitelline coat’ is probably the final secretion, 
characteristic of mature oocytes: a thin layer of glycoprotein, 
crucial to maturation and fertilization (Focarelli et al. 1990; 
Focarelli and Rosati 1993). It is conceivable that the same 
secretory process is responsible for the oocyte coat layers, 
with qualitatively different mucopolysaccharides/glycopro-
teins in each layer (Wourms 1987). Differential expression of 
this character would help to explain why some bivalve species 
possess thick oocyte coats and others do not (Beninger and 
Chérel 2019). The lack of merocrine secretory vesicles in the 
TEM micrographs of the non-coat species may be due to the 
fact that secretory activity is comparatively slight for the zona 
pellucida, and in any event terminates in the mature oocyte.

Fig. 5   Cerastoderma edule. a 
Young oocyte (YO) and adja-
cent auxiliary cell (AC); b YO 
beginning growth toward acinal 
lumen (AL). c, d Thin coat (C) 
around very young oocytes. e 
Thick coat around pedunculated 
(P) oocyte. f Young atresic 
oocyte and g mature atresic 
oocyte. Nucleus (N)
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Costs and benefits of the cockle oocyte coat

The oocyte coat occupied a large part of the acinal volume 
in the cockles of the present study (~ 40% at peak oogen-
esis), thereby reducing the number of oocytes per acinus. 

Although the intra-acinal degree of hydration is unknown, 
secretion of the coat invariably entails energy expenditure. 
The possible benefits of the oocyte coat were proposed 
in Beninger and Chérel (2019): protection from abrasion, 
predation and opportunistic microbes. Other authors have 

Fig. 6   Cerastoderma edule. Transmission electron micrographs. a 
mature oocyte (left) with inner (IL) and outer (OL) layers of oocyte 
coat (OC) and zona pellucida (ZP) adjacent to oolemma (OM). Oogo-
nia without coat (OG), with accompanying auxiliary cell (AC). Note 
synaptonemal complex (SC) in nucleoplasm. Putative mucus vesicles 

(MV) and yolk granule (YG) in mature oocyte, oocyte debris (OD) 
on external surface of oocyte coat. b Mucus vesicles and mitochon-
dria close to oolemma, N, Nucleus. c mucus vesicle exocytosis (bold 
arrows)
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variously suggested that such a coat might minimize poly-
spermia (in sea urchins) (Hagström 1959) and increase the 
probability of an encounter with spermatozoa (Farley and 
Levitan 2001; Levitan 2006). Indeed, the coat doubles the 
size of the uncoated oocyte (Honkoop and Van der Meer 
1998; Pronker et al. 2015; present study). Such an increase 
in size might also offer a size refuge from some zooplank-
tonic and benthic suspension-feeding predators.

Relation between oocyte coat and atresia: can two 
enigmas solve each other?

‘For what purpose?’ is usually the first question that comes 
to mind when we learn that a large proportion of energeti-
cally costly oocytes is routinely ‘self-destroyed’. Both the 
causes and potential benefits of oocyte atresia are very 
poorly-understood (Beninger 2017; Chérel and Beninger 
2017, 2019). The sacrifice of healthy or impaired female 
gametes for nutrient transfer to vitellogenic oocytes or 
developing embryos is well-documented in many ani-
mal taxa, including the Mollusca (Webber 1977; De 

Jong-Brink et al. 1983; Wourms 1987; Ponder et al. 2019). 
Several authors have proposed that auxiliary cells resorb 
metabolites from oocyte degeneration for recycling in 
future vitellogenesis (Pipe 1987a,, 1987b; Dorange and 
Le Pennec 1989; Le Pennec et al. 1991; De Gaulejac et al. 
1995; Chung 2007, 2008; Chung et al. 2007, 2008; Lee 
and Chung 2008; Kim and Chung 2014; Kim et al. 2014; 
Kim 2016). We have not observed such a process in Ceras-
toderma edule; indeed, the quantity of available oocyte 
debris is too great to be resorbed by the auxiliary cells 
alone–and no masses of macrophages have been observed 
in any of the individuals examined.

The lack of inter-oocyte adhesion, despite the presence 
of a viscous and sticky acid mucopolysaccharide coat (Beni-
nger and St-Jean 1997; Smith and Morin 2002), is intrigu-
ing. The cellular debris observed on the external surface of 
all oocyte coats within the acini would effectively isolate the 
mucopolysaccharides from neighboring oocytes prior to and 
during spawning, thus enabling the oocytes to be released 
individually, rather than as a large, negatively-buoyant egg 
mass, which would be subjected to desiccation and osmotic 

Fig. 7   Cerastoderma edule. 
a female cockle spawn, 
non-adhering oocytes (white 
arrows); RV, right valve; b 
spawned, fertilized, unstained 
live oocyte surrounded by 
oocyte coat (C). c veliger larva 
in coat (C), shell hinge (H) and 
velum (V) composed of ciliary 
tracts. S, seston particles adher-
ing to coat
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stress in the intertidal habitat of this species. Cockles can 
thus accrue the advantages of the oocyte coat without sac-
rificing the necessity of broadcast spawning in this habitat. 
Additionally, the non-sticky state would allow the oocytes to 
be spawned individually in small numbers, resulting in the 
extended ‘dribble spawning’ strategy previously reported for 
this species (Chérel and Beninger 2019). The presence of 

atresic oocytes in all oogenic individuals is consistent with 
this interpretation.

We are unaware of any other study which shows the sac-
rifice of germ line cells (i.e. atresia) resulting in the elabo-
ration of a ‘non-stick’ surface on coated, healthy oocytes. 
The data of the present study suggest that these two oth-
erwise unrelated processes, oocyte atresia and oocyte coat 
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production, are functionally linked in Cerastoderma edule. 
High-fecundity organisms, including bivalves, are character-
ized by a large proportion of genetically-inviable propagules 
(Plough et al. 2016; Plough 2018); oocyte atresia may thus 
be an early manifestation of inviability. Utilization of the 
debris of these inviable oocytes may be an evolutionary miti-
gation of a gametogenic ‘Red Queen’ state [see Strotz et al. 
(2018) for a review of the Red Queen hypothesis].

The findings of the present study augment the already 
considerable avenues for future research on the conse-
quences of both oocyte atresia and the oocyte coat in marine 
bivalves. It would be of immediate interest to replicate these 
investigations in some of the other bivalves known to have 
both oocyte coats and planktonic development (Beninger 
and Chérel 2019).
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